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Wavelength scaling of spiral patterns formed by granular media underneath a rotating fluid

F. Zoueshtiagh and P. J. Thomas*
Fluid Dynamics Research Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 27 September 1999; revised manuscript received 4 January 2000!

A spiral pattern formed by granular media underneath a rotating fluid is discussed. Results from a cellular-
automaton model are compared to experimental data, and are found to reproduce experimentally observed
scalings. A theoretical argument predicting these scalings on the basis of the existence of a critical threshold
condition is advanced. It is suggested that the pattern is probably not associated with a hitherto unknown flow
instability, as has been speculated previously. It appears that the pattern constitutes some rotating analog to
sand ripples in nonrotating systems.

PACS number~s!: 47.54.1r, 45.70.Qj, 47.55.Kf, 92.10.Wa
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I. INTRODUCTION

A spiral pattern established in a granular layer underne
a rotating fluid is discussed. We first reported about the
perimental observation of this pattern in Ref.@1#, but were
not able to present a conclusive explanation for the mec
nism involved in the pattern formation. We did, howeve
speculate about a number of different possible such me
nisms. Here we will, for the first time, compare our expe
mental results to computational data. It will be found tha
simple cellular-automaton model is sufficient to reprodu
the characteristic scalings measured in the experiment
will be shown that a simple intuitive theoretical argume
can be advanced which can explain the scalings found
perimentally and computationally. It will be argued that th
result lends strong support to one of our hypothesis in R
@1# concerning the origin of the observed patterns.

In Ref. @1# we discussed a spiral pattern developing on
bottom of a partially fluid-filled, rotating tank~radius of tank
R544.75 cm!. The experimental setup is illustrated in Fig.
The bottom of the tank is initially covered with a thin lay
~approximately 2–3 mm deep! of uniformly distributed gran-
ules. The fluid above the granule layer is in a state of so
body rotation and, hence, does not move relative to the g
ules. Spiral patterns were observed to form when
rotational velocity of the tank is instantaneously increas
from one constant rotation ratev0 to a higher rotation rate
v1. The fluid mass in the tank cannot follow the instan
neous acceleration of the tank. This results in shear fo
being established between the granule layer and the
above it. If the incrementDv5v12v0 is sufficiently large,
such that the shear forces are high enough, then the gran
are set in motion and begin to slide across the bottom of
tank. As a result of this, a reorganization process is initia
which leads to the formation of spiral patterns such as
one displayed in Fig. 2. Figure 2 shows the spiral patt
viewed from vertically above the tank. One can see spi
which were formed by the agglomeration of small~diameter
around 0.3 mm! white granules against the black backgrou
of the tank. The patterns are fully established, typica
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10–20 sec after the spin-up of the tank. Patterns with
tween 7<n<110 spiral arms were observed—refer to R
@1# for further photographs. The analysis of our experimen
data in Ref.@1# revealed that

n}
v1

0.5

Dv
. ~1!

Each of the spiral arms originates from an inner gran
patch with a radiusr 0. This inner patch appeared to rema
essentially unaffected by the ongoing granule reorganiza
process. The radius of the inner patch was found to scal

r 0

R
520.34 lnS Dv

vc
D10.49 ~2!

for 0.4<Dv/vc<3.5. In Eq. ~2!, vc51.0 rad s21 is the
measured critical rotational speed required to generate a
tern when the turntable is accelerated from rest (v050).

It appears reasonable to assume that the forceFk required
to set a granule in motion is constant everywhere on
granular layer on the bottom of the tank as long as centr
gal forces can be neglected. Hence the radiusr 0 of the inner
patch always corresponds to that location where the sh
force exerted on the grains is equal toFk . If one character-
izes Fk in terms of some mean valuevk of the azimuthal
flow velocity above the edge of the granule patch, then o
expects

vk5const3Dvr 0 . ~3!

Hencer 0}1/Dv, as was argued and verified experimenta
in Ref. @1#, where it was found that

r 0

R
50.5S Dv

vc
D 21.05

~4!

for 1.0<Dv/vc<3.5; i.e., when the data with lowest value
of Dv/vc are neglected.

In the remainder we will computationally generate ripp
patterns which will be found to display theDv scalings ex-
pressed by Eqs.~1! and ~4!. Facilitated by a comparison o
the experimental and computational results, we will be
abled to arrive at certain conclusions concerning the ori
and the physical mechanisms underlying the spiral-pat
formation first described in Ref.@1#. The discussion will, in
ic
5588 ©2000 The American Physical Society
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PRE 61 5589WAVELENGTH SCALING OF SPIRAL PATTERNS . . .
particular, suggest that the spiral patterns are not a visua
tion of, or associated with, a hitherto unknown flow instab
ity associated with the boundary layer on the bottom of
tank, as has been suggested previously. On the basis o
results discussed here it will emerge that the spiral patte
appear to be some type of rotating analog of sand ripp
such as commonly observed in similar form in the deser
on beaches.

II. COMPUTATIONAL APPROACH

The computational approach adopted to investigate
observed ripple patterns represents, essentially, an adapt
of the type of cellular-automaton model described, for
stance, by Kaneko@2# or Nishimori and Ouchi@3#. Nishimori
and Ouchi used such a model to simulate the formation
ripple patterns in an aeolian system of wind-blown sand i
straight channel. Here we will adapt and generalize t
model to suit the circular flow geometry of our present e
periment. It is noted that the particular mapping functio
chosen in Ref.@3# to model grain transport were originall
devised with aeolian systems in mind. In such systems
physical mechanisms involved in ripple formation are diffe
ent than in fluvial system@4–7#. Nevertheless, it will be
found that the model of Nishimori and Ouchi is sufficient
reproduce the essential scalings observed in our fluvial
tem. The discussion of this observation will reveal that it
not, in fact, the details of the mapping functions employed
simulate grain transport that are important, but rather
existence of a critical threshold condition inherent in t
model. On the basis of this observation it will be possible
formulate appropriate physical arguments readily yield
the experimentally observed scalings. These physical a
ments and the conclusions drawn from them appear to s
some first light on the origin of the spiral patterns and
some of the physical mechanisms involved in their form
tion. In this respect the present study constitutes, as far a
are aware of, probably the first direct application of t
model of Nishimori and Ouchi to a real physical system.

For our adaptation of the model described in Ref.@3#, we
make the simplifying assumption that the fluid as well as
granules move in concentric circular trajectories around
center of the tank. Hence only the azimuthal velocity co
ponentv of the granules and the fluid is accounted for. T
radial flow component, which exists in the physical syste
is neglected. This assumption does, of course, represe
severe simplification of the flow in and above the Ekm
boundary layer@8,9# over the loose granular boundary@10#.

FIG. 1. Sketch of the experimental setup.
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However, it will be seen that the assumption does not aff
our main conclusions.

We assume a coordinate system, with coordinatesx andy,
which is fixed in the rotating frame of reference and who
origin coincides with the center of the rotating tank. T
simulations are performed on a lattice with 2003200 grid
points. The computational domain is initialized by rando
initial conditions according toh(x,y)5h01d, whereh(x,y)
specifies the height of the sand surface at sitex,y, and where
the random numberd is very small compared to the consta
h0. It is assumed that the azimuthal flow velocityv(r ) on
neighboring concentric flow trajectories increases linea
with the distancer from the center of the tank, such that

v~r !5~v12v0!r 5Dvr . ~5!

Saltation and creep@3,4# are assumed to be the tw
mechanisms responsible for grain transport. The two mec
nisms are modeled by moving grains around the lattice s
according to some simple mapping functions. The mapp
proceeds from one iteration stepn to stepn11 via an inter-
mediate stepn8. The saltation step is carried out first, and t
result is stored as the intermediate stepn8. Then the creep
step is performed to yield the final result for time st
n11.

Saltation is described by moving a number ofq granules
over a certain saltation flight lengthL(r ) from one grid po-
sition to another one. With regard to the circular flow geo
etry we interpretL(r ) as an arc with radiusr 5Ax21y2. The
flight lengthL(r ) has, thus, componentsLx andLy in both
coordinate directions. The values ofLx and Ly associated
with L(r ) can be determined from simple geometric cons
erations. The flight length is modeled as

L~r !5L0~r !1b~r !@hn~x,y!2h0#. ~6!

In Eq. ~6! L0(r ) is a control parameter assumed to repres
the shear stress imposed on the sand surface by the
moving above it. The appropriately nondimensionaliz
quantityb(r ) is assumed to represent the mean flow veloc
experienced by a grain during its saltation flight. The phy
cal meaning of the term@hn(x,y)2h0# is that the flight

FIG. 2. Spiral-ripple pattern observed in an experiment w
Dv50.8 rad s21 andv153.1 rad s21; the turntable rotates counter
clockwise. The diameter of the pattern corresponds to the diam
(89.5 cm! of the fluid-filled circular tank.
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5590 PRE 61F. ZOUESHTIAGH AND P. J. THOMAS
length of a grain will be the longer the higher its starti
point. With respect to the assumed linear radial increas
the azimuthal flow velocity, defined by Eq.~5!, we scale
b(r ) of Eq. ~6! asb(r )5b0(Dvr /DvR), whereb0 is a con-
stant. A similar assumption is made for the value ofL0(r )
which is taken asL0(r )5k(Dvr /DvR)Dv, where,k is a
constant. Finally, the actual saltation step by which theq
granules are moved is summarized by the expressions

hn8~x,y!5hn~x,y!2q, ~7a!

hn8„x1Lx~hn!,y1Ly~hn!…5hn„x1Lx~hn!,y1Ly~hn!…1q.
~7b!

Note that we have abbreviatedhn(x,y) ashn in Eq. ~7b! for
simplicity.

The creep step is described as

hn11~x,y!5hn8~x,y!1DF1

8 (
NN

hn8~x,y!

1
1

12 (
2ndNN

hn8~x,y!22hn8~x,y!G . ~8!

In Eq. ~8!, the index notations NN and 2ndNN indicate that
the summations extend over the nearest and the second
est neighbors, respectively. Our definition of nearest and
ond nearest neighbor sites is illustrated in Fig. 3, and diff
from the definition used in Ref.@3#. Note that the last term
on the right hand side of Eq.~3! of Ref. @3# is, in fact,
incorrect as a factor 2 has been omitted. The term has to
correctly •••22hn8(x,y) as in the above Eq.~8!. We have
verified that mass is conserved throughout the computati
As L(r )→0 for r→0, the grid structure will necessarily be
gin to affect the computations below some critical value or.
We have also observed some evidence of the square
structure being visible in a number of our computational p
terns for lowerr. By performing computations on computa
tional domains with different sizes, we have verified that o
main quantitative results are not influenced by the ac
domain size. In the remainder it will further be seen th
mass conservation, the exact grid structure, and details o
algorithms underlying our computations are not, in fact, cr
cal factors affecting our main conclusions.

III. COMPARISON OF COMPUTATIONAL
AND EXPERIMENTAL DATA

Figures 4~a! and 4~b! show two different patterns obtaine
from our computations for valuesDv55 andDv511, re-
spectively. Note that for the computationsDv is specified in
arbitrary units and not in units of rad s21 as for the experi-

FIG. 3. Sketch illustrating the definition of nearest and seco
nearest-neighbor sites underlying the computations.
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mental data. The values of the constants appearing in
~6!–~8! areq51, b052, k51, andD51. This particular set
of parameters was chosen as it resulted in well establis
distinct patterns. Pattern formation is not observed for
possible combinations of values of the parameters. Thi
similar to the observations discussed in Ref.@3#. The gray
scale in Figs. 4~a! and 4~b! characterizes the height of gran
ules at a particular lattice point. Light gray corresponds
higher numbers of granules being stacked on top of e
other, whereas dark gray identifies lower values. The m
qualitative aspects to note from Figs. 4~a! and 4~b! are as
follows. The program produces a ripple pattern displayin
decreasing number of arms for increasingDv. The arms
originate from an inner patch whose radius decreases
increasingDv. These results are consistent with the expe
mental observations. The pattern does, of course, not rev

-

FIG. 4. Computational ripple patterns for two different values
Dv specified in arbitrary units~a! Dv55 and~b! Dv511. For a
comparison with the experimental pattern of Fig. 2 the diamete
the computed patterns should be equated with the diameter~89.5
cm! of the fluid-filled circular tank used in the experiment.
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PRE 61 5591WAVELENGTH SCALING OF SPIRAL PATTERNS . . .
spiral structure as our model neglects the centrifugal fo
the associated radial flow component and Coriolis effe
We have carried out a number of preliminary test runs wh
incorporated a radial flow component, and these produce
spiral pattern. It will, however, be found that the actual spi
structure is irrelevant in the present context.

Figure 5 shows a quantitative comparison between c
putational and experimental results for the diameter of
inner granule patch. It is estimated that the patch radiusr 0 /R
can be determined with a maximum error of less than60.04
from figures such as Figs. 4~a! and 4~b!. When viewing Fig.
5, recall thatDv is expressed in arbitrary units for the com
putations.

In Ref. @1#, a best fit to the experimental data points a
cording to Eq.~2! was obtained when a least squares fit
based on the entire data set displayed in Fig. 5. This fi
represented in Fig. 5 by the dotted line interpolating the
perimental data points. However, it was argued above an
Ref. @1# that a power-law scaling according tor 0 /R
}Dv21 should be expected under the conditions discus
in connection with Eqs.~3! and~4!. In Ref. @1# it was indeed
verified that such a power-law fit is the best fit to the d
points in the interval 1.0<Dv/vc<3.5. The fit based solely
on the data points lying within this data interval is given
Eq. ~4!, and it is represented in Fig. 5 by the solid lin
through the experimental data points. A least-squares fi
power-law type through the computational data points of F
5 yields r 0 /R}Dv20.92. This result is in close agreemen
with the expectedDv21 scaling. For the data fit, the com
putational point with the lowest value ofDv in Fig. 5 was
neglected. The computations indicate that theDv21 scaling
breaks down for larger values ofr 0 /R. It appears that this is
a consequence of the boundary conditions, associated
the finite computational domain, increasingly affecting t
computations. Low values ofDv are associated with a larg
inner patch. The edge of the patch is, thus, close to the
tem boundary. Hence the pattern formation process at
edge of the patch will be affected by inhomogeneities aris
from the creep step of Eq.~8! in association with the finite
computational domain. If the computational data point w
the lowest value ofDv is included in the least-squares fi
one findsr 0 /R}Dv20.80. The experimental and computa
tional data do, of course, differ by an arbitrary constant,

FIG. 5. Comparison of the inner patch radius observed in
experiments with the patch radius generated by the computatio
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indicated in Fig. 5. The computations cannot, obvious
yield a physically correct value for this constant. In th
physical system the constant should depend on the partic
type of grains, on their size, and on the type of fluid us
These factors are not accounted for in the computations

Figure 6 displays a comparison between the numbe
arms observed in the patterns generated by the computa
and the number of spiral arms observed in the experime
The experimental data, originally contained in Ref.@1#, scale
as n}Dv21.04. The number of arms of the computation
patterns was counted in the immediate vicinity of the edge
the inner patch. Hence it does not take into account va
tions due to dislocations which appear occasionally at lo
tions further radially outward from the edge of the patch.
discussed in the context of Fig. 5, data points for low valu
of Dv appear to be influenced by affects arising from t
finite computational domain. In order to account for this, F
6 shows three different least-squares fits of power-law t
to the computational data. These three alternative fits
intended to provide some means to evaluate the error a
ciated with the exponent of theDv scaling. The dashed line
represents a fit which takes account of all 12 data po
shown and for whichn}Dv20.81. The dotted line represent
a fit for which the data points with the three lowest values
Dv were neglected, and for whichn}Dv20.90. The solid
line represents a fit for which the data points with the fi
lowest values ofDv were neglected, and for whichn
}Dv21.01. It can be concluded that the computational da
are in excellent agreement with the experimental results.

IV. DISCUSSION AND CONCLUSION

The close agreement between the scalings observed in
experiment and in the computations prompted us to won
what aspect of the model might, in fact, be responsible
this result. Evidently, the simple mapping functions e
ployed to simulate grain motion cannot capture the details
the complicated physics of the small-scale grain dynamics
the bottom of the tank. Hence it appeared unlikely that
agreement between experiment and computation was a
sequence of these particular functions. This observation
to the conclusion that the agreement was, in fact, a resu

e
s.

FIG. 6. Comparison of the number of spiral arms observed
the experiment with the number of ripples generated by our co
putations.
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5592 PRE 61F. ZOUESHTIAGH AND P. J. THOMAS
critical threshold conditions which are inherent in both t
physical system and the computational model. On the b
of this result it is then possible to formulate simple, intuiti
physical arguments which readily yield the scalings obser
in the experiment and the computations. These argument
briefly summarized below. In this context it will becom
apparent what exactly is meant by critical threshold con
tions.

As discussed in Sec. I, it is reasonable to assume tha
one particular type of granules and one particular fluid
certain constant critical forceFk is required to set a grain in
motion. From Eqs.~3! it is known that this impliesr 0
}1/Dv, as was verified experimentally by Eq.~4!. However,
a constantFk also suggests that the established azimu
pattern wavelengthl0 at the edge of the inner patch shou
be constant. Although the exact value ofl0 is, of course, not
known it is reasonable to assume that this wavelength wil
the same no matter how large the patch radiusr 0 is. Thus a
necessary condition at the edge of the patch is consequ
2pr 05nl0. Replacingr 0 in this expression by means of Eq
~3! readily yields n5const3(2pvk /l0Dv). Hence n
}1/Dv, as is observed in the experiments—see Eq.~1!.
Thus the close agreement between experiment and com
tion appears to be a consequence of the existence of
critical forceFk necessary to set a granule in motion. In t
computations this critical force corresponds to the existe
of some critical value ofLk(r ) required to induce a ripple
formation. The existence of this critical value has been v
fied theoretically as well as on the basis of computatio
data in Ref.@3#. Theoretically it follows from the stability
analysis contained in Ref.@3#; computationally it is ex-
pressed by the phase diagram displayed in Fig. 3 of Ref.@3#.

Originally it was the comparison between the experim
tal and the computational data which prompted us to rea
the discussed physical arguments yielding the required s
ings. In retrospect it appears, however, that the significa
of the computational model in the context of this paper is
fact, to support just these physical arguments. Whatever
main conclusions of our discussions are as follows. T
Dv21 pattern scaling first described in Ref.@1# can be un-
derstood in terms of the circular flow geometry together w
a critical threshold condition. The actual granule motion
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such is, thus, irrelevant for the scalings observed in the
periments and expressed by Eqs.~1! and ~4!. Consequently,
the number of spiral arms should not depend on the rou
ness of the bottom of the tank, as was speculated in Ref.@1#.
The roughness restricts the motion of the grains and will
at all, only affect the spiraling angle of each spiral arm.
Ref. @1# we suggested different incompatible hypothes
concerning the possible origin of the spiral patterns. O
hypothesis was that the spiral patterns are a visualization
hitherto unknown flow instability of the boundary layer flo
on the bottom of the tank. The results obtained from o
adaptation of the model described in Ref.@3# together with
our physical arguments show, however, that our experim
tal observations do not necessitate postulating such a
instability. On the basis of these results it is concluded t
the spiral patterns are probably not a visualization of,
associated with, a new flow instability. It now appears th
the spiral patterns represent some type of rotating ana
similar to such ripple patterns, as typically observed in sa
on the bottom of the ocean or in the desert.

Although our results explain the scaling associated w
the number of spiral arms observed, it still appears surpris
that the arms indeed form outside the inner patch forr .r 0.
As the photo of Fig. 2 reveals, there are large areas betw
neighboring spiral arms which are entirely free of granul
During the pattern formation process the granules s
across the bottom of the tank in these regions. One wo
expect the dynamics in the granule-free regions to be dif
ent from those on top of a granular layer. Hence it is n
obvious why ripple patterns persist in the granule-free
gions.

We have so far not been able to find a similarly simp
physical argument to explain thev1

1/2 scaling expressed by
Eq. ~1!. However, with regard to our present results, it a
pears that this scaling cannot be a result of the Cori
forces acting on the moving grains. Through the critic
force Fk the number of spiral arms is effectively select
prior to the onset of the granule motion. The Coriolis for
cannot, however, influence the dynamics until the granu
move. Hence it appears reasonable to speculate that thev1

1/2

scaling possibly reflects some influence of the centrifu
forces on the value ofFk .
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